
Ringkraftaufnehmer CT

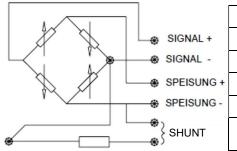
Besondere Merkmale

- Hohe Genauigkeit
- Hohe, schmale Bauform
- Schutzgrad IP65

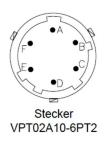
Größe	Nenn- last	A	В	С	D	E	F
А	100 kN 200 kN 300 kN	46	54,2 52,6 50,7	57,8 59,7 61,4	80	45	15
В	200 kN 300 kN 500 kN 750 kN	70	76,2 74,9 72,2 72	81,3 82,5 84,9 84,7	101	45	45
С	500 kN 750 kN 1 MN 1,5 MN	94	102,8 100,2 97,9 95,3	112,1 114,2 116,5 118,6	140	60	45
D	1,5 MN 2 MN 2,5 MN 3 MN	110	124,1 120,1 115,8 111,4	146,2 149,6 152,9 156	196	60	80

Werkstoffe:

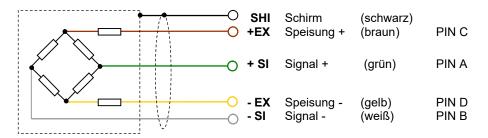
Messkörper: Edelstahl Gehäuse Aluminium, eloxiert


Technische Daten

Genauigkeitsklasse		0,5	
Nennkraft (=F _N)	kN	100 / 200 / 300 / 500 / 1000 / 1500 / 2000 / 2500 / 3000	
zulässige Grenzkraft	%F _N	>130	
Bruchkraft	%F _N	>300	
Grenzquerkraft	%F _N	40	
Referenztemperatur	°C	23	
Nenntemperaturbereich	°C	+20 +50	
Gebrauchstemperaturbereich	°C	-20 +60	
Schutzart (EN 60529)		IP 65	
Nennkennwert (=S) ¹⁾	mV/V	2,000 ±0,02	
Nullsignaltoleranz	%S	≤1	
max. Speisespannung	V	≤15	
Eingangswiderstand	Ω	700±30	
Ausgangswiderstand	Ω	700	
Isolationswiderstand	Ω	> 10· 10 ⁹	
Linearitätsfehler	%F _N	≤0,5	
Umkehrspanne	%F _N	≤0,5	
Reproduzierbarkeit	%F _N	≤0,5	
TK des Nullsignals pro 10K	%F _N	≤0,2	
TK des Kennwertes pro 10K	%F _N	≤0,2	
Kriechfehler (30min)	%F _N	≤0,06	
Nennmessweg	mm	<0,1	


¹⁾ Der tatsächliche Kennwert wird im beigefügten Prüfprotokoll angegeben Die Fehlerangaben beziehen sich auf eine optimale Krafteinleitung

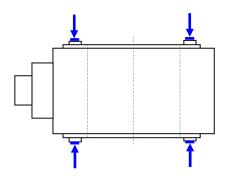
Elektrischer Anschluss


Der Kraftmessring wird standardmäßig mit Stecker, jedoch ohne Sensorkabel geliefert. Der Sensor verfügt über ein Shuntwiderstand zur Verstimmung der Brücke. Die Messkette kann damit auf Funktion geprüft werden. Bei Kurzschließen von E mit F wird ein Signal von etwa 80% der Nennlast erzeugt. Der exakte Wert ist auf dem Typschild angegeben.

Pin	Farbe		
Α	grün		
В	weiß		
С	braun		
D	gelb		
E-F	N/C		

Ausführung mit Sensorkabel

Kabel montiert am Sensorstecker: PVC 4x0,34mm², Außendurchmesser 5,7mm, Länge: durch Kunden wählbar



Montagehinweise

Die Krafteinleitungsflächen der angrenzenden Bauteile sollten:

- eben sein, vorzugsweise geschliffen
- sich nicht verformen, oder verbiegen
- eine sehr geringe Parallelitätsabweichung haben

Bei Nichtbeachtung dieser Hinweise kann sich der Kennwert um bis zu 20 Prozent verschieben. Reproduzierbarkeit und Linearität bleiben weitgehend erhalten. Lassen Sie sich passende gehärtete und geschliffene Scheiben anbieten.

Krafteinleitung für CT 1,5MN (Gr. C) mit Scheibe 120x90x6,5

Krafteinleitung für CT 1,5MN (Gr. C) mit Axialgelenklager AX 50